1. Calculate the distance of these points to the origin. Plot them.

$$
\mathrm{d}=\sqrt{x^{2}+y^{2}}
$$

$(0,1)$
$\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$
$\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
$(0,-1)$
$\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$
$\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$
(1, 0)
$\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$
$\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
$(-1,0)$
$\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$
$\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$
2. Plot this equation with a computer. What is the distance of all its points to the origin?

$$
1=x^{2}+y^{2}
$$

3. Is the equation from problem \#2 a function? Solve for y and plot on a computer.
4. Plot the circles on a computer to determine what the parameters r, h, and k represent graphically.

$$
r^{2}=(x-h)^{2}+(y-k)^{2}
$$

$1^{2}=(x-0)^{2}+(y-0)^{2}$
$2^{2}=(x-0)^{2}+(y-0)^{2} \quad 1^{2}=(x-2)^{2}+(y-0)^{2} \quad 1^{2}=(x-0)^{2}+(y-2)^{2}$
$3^{2}=(x-0)^{2}+(y-0)^{2} \quad 1^{2}=(x-4)^{2}+(y-0)^{2} \quad 1^{2}=(x-0)^{2}+(y-4)^{2}$
$4^{2}=(x-0)^{2}+(y-0)^{2}$
$1^{2}=(x+2)^{2}+(y-0)^{2}$
$1^{2}=(x-0)^{2}+(y+2)^{2}$
$5^{2}=(x-0)^{2}+(y-0)^{2}$
$1^{2}=(x+2)^{2}+(y-0)^{2}$
$1^{2}=(x-0)^{2}+(y+4)^{2}$
5. Plot the circles on a computer. Write them in standard form.

$$
1=\frac{x^{2}}{1}+\frac{y^{2}}{1} \quad 1=\frac{x^{2}}{4}+\frac{y^{2}}{4} \quad 1=\frac{x^{2}}{9}+\frac{y^{2}}{9} \quad 1=\frac{x^{2}}{16}+\frac{y^{2}}{16}
$$

6. Plot the on a computer. What are the major/minor axis lengths?

$$
1=\frac{x^{2}}{1}+\frac{y^{2}}{4} \quad 1=\frac{x^{2}}{4}+\frac{y^{2}}{1} \quad 1=\frac{x^{2}}{9}+\frac{y^{2}}{4} \quad 1=\frac{x^{2}}{1}+\frac{y^{2}}{16}
$$

7. Plot the ellipses on a computer to determine what the parameters a, b, h, and k represent graphically.

$$
\begin{aligned}
& 1=\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}} \\
& 1=\frac{(x-0)^{2}}{1^{2}}+\frac{(y-0)^{2}}{1^{2}} \\
& 1=\frac{(x-0)^{2}}{2^{2}}+\frac{(y-0)^{2}}{1^{2}} \\
& 1=\frac{(x-0)^{2}}{3^{2}}+\frac{(y-0)^{2}}{1^{2}} \\
& 1=\frac{(x-0)^{2}}{4^{2}}+\frac{(y-0)^{2}}{1^{2}} \\
& 1=\frac{(x-0)^{2}}{1^{2}}+\frac{(y-0)^{2}}{2^{2}} \\
& 1=\frac{(x-0)^{2}}{1^{2}}+\frac{(y-0)^{2}}{3^{2}} \\
& 1=\frac{(x-0)^{2}}{1^{2}}+\frac{(y-0)^{2}}{4^{2}} \\
& 1=\frac{(x-0)^{2}}{2^{2}}+\frac{(y-0)^{2}}{1^{2}} \\
& 1=\frac{(x-5)^{2}}{3^{2}}+\frac{(y-0)^{2}}{1^{2}} \\
& 1=\frac{(x+6)^{2}}{4^{2}}+\frac{(y-0)^{2}}{1^{2}} \\
& 1=\frac{(x-0)^{2}}{1^{2}}+\frac{(y-0)^{2}}{2^{2}} \\
& 1=\frac{(x-0)^{2}}{1^{2}}+\frac{(y-5)^{2}}{3^{2}} \\
& 1=\frac{(x-0)^{2}}{1^{2}}+\frac{(y+6)^{2}}{4^{2}}
\end{aligned}
$$

8. On the computer, plot an ellipse with:
a) width $=2$, height $=4$, center at $(2,3)$
b) width $=4$, height $=6$, center at $(2,3)$
c) $2 \sqrt{2}$ units wide, 4 units tall, center at $(-\sqrt{2},-2)$
d) 2 units wide, 1 unit tall, center at ($-1,1 / 2$)
9. Plot. What happens to the function when the denominator is zero?

$$
\begin{array}{lll}
f(x)=\frac{1}{x} & f(x)=\frac{1}{x-5} & f(x)=\frac{1}{x+5} \\
f(x)=-\frac{1}{x} & f(x)=-\frac{1}{x-5} & f(x)=-\frac{1}{x+5} \\
f(x)=\frac{1}{x^{2}} & f(x)=\frac{1}{(x-5)^{2}} & f(x)=\frac{1}{(x+5)^{2}} \\
f(x)=-\frac{1}{x^{2}} & f(x)=-\frac{1}{(x-5)^{2}} & f(x)=-\frac{1}{(x+5)^{2}} \\
f(x)=\frac{1}{x^{3}} & f(x)=\frac{1}{(x+5)(x-5)} f(x)=\frac{1}{x(x+5)(x-5)}
\end{array}
$$

10. What is the limiting and asymptotic behavior? Freehand below.

$$
f(x)=\frac{1}{x} \quad f(x)=-\frac{1}{x}
$$

11. Plot the hyperbolas and lines with slope $\pm \frac{b}{a}$ on a computer.

$$
1=\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}
$$

a) $\quad 1=\frac{(x-0)^{2}}{2^{2}}-\frac{(y-0)^{2}}{3^{2}} \quad$ with $y= \pm \frac{3}{2} x$
b) $\quad 1=\frac{(x-0)^{2}}{3^{2}}-\frac{(y-0)^{2}}{4^{2}} \quad$ with $y= \pm \frac{4}{3} x$
c) $1=\frac{(x-0)^{2}}{5^{2}}-\frac{(y-0)^{2}}{6^{2}} \quad$ with $y= \pm \frac{6}{5} x$
12. Plot the hyperbolas and lines with slope $\pm \frac{b}{a}$ on a computer.

$$
1=\frac{(y-k)^{2}}{b^{2}}-\frac{(x-h)^{2}}{a^{2}}
$$

a) $\quad 1=\frac{(y-0)^{2}}{3^{2}}-\frac{(x-0)^{2}}{2^{2}} \quad$ with $y= \pm \frac{3}{2} x$
b) $\quad 1=\frac{(y-0)^{2}}{4^{2}}-\frac{(x-0)^{2}}{3^{2}} \quad$ with $y= \pm \frac{4}{3} x$
c) $\quad 1=\frac{(y-0)^{2}}{6^{2}}-\frac{(x-0)^{2}}{5^{2}} \quad$ with $y= \pm \frac{6}{5} x$

