1. Place the elements $\{1,2,3,4,5\}$ into a
a) row vector \underline{a}
b) column vector \underline{b}
2. What are some other notations for vectors \underline{a} and \underline{b} ?
3. What are the dimensions of vectors \underline{a} and \underline{b} ?
4. What are \underline{a}^{\top} and \underline{b}^{\top} ($T=$ transposed vectors)?
5. Freehand the following vectors. What is the magnitude (r) and direction (θ, the angle counterclockwise from the x-axis)?
a) $[1,-1]$
$[-1,1]$
$[-1,-1]$
[1, 0]
$[0,1]$
b) $[1,1]$
$\left[\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]$
[10, 10]
$[5 \sqrt{2}, 5 \sqrt{2}]$
6. Add the following vectors. Plot the three vectors.

$$
\begin{aligned}
& {[1,1]+[1,-1]=} \\
& {[-1,-1]+[1,-1]=}
\end{aligned}
$$

$$
[1,0]+[0,1]=
$$

$$
[1,1]+[1,1]=
$$

7 a) A ship captain logs the northward and eastward movement of a ship for 5 hours. Plot the course.

hour	N	E
1	10	10
2	20	20
3	30	10
4	30	10
5	10	10

b) An airplane flies due north for 5 hours, with wind coming from the west (moving east). Plot the course.

hour	airplane speed	wind speed
1	100	50
2	200	100
3	300	50
4	300	50
5	100	50

c) What is the resultant vector \vec{x} ? Plot it.

$$
\vec{x}=\overrightarrow{x_{1}}+\overrightarrow{x_{2}}+\overrightarrow{x_{3}}+\overrightarrow{x_{4}}+\overrightarrow{x_{5}}
$$

i) $\overrightarrow{x_{1}}=[1,0]$

$$
\overrightarrow{x_{2}}=[2,0]
$$

$$
\overrightarrow{x_{3}}=[3,0]
$$

$$
\overrightarrow{x_{4}}=[4,0]
$$

$$
\overrightarrow{x_{5}}=[5,0]
$$

ii) $\quad \overrightarrow{x_{1}}=[10,10]$

$$
\overrightarrow{x_{2}}=[20,20]
$$

$$
\overrightarrow{x_{3}}=[10,30]
$$

$$
\overrightarrow{x_{4}}=[10,30]
$$

$$
\overrightarrow{x_{5}}=[10,10]
$$

iii) $\overrightarrow{x_{1}}=[50,100]$
$\overrightarrow{x_{2}}=[100,200]$
$\overrightarrow{x_{3}}=[50,300]$
$\overrightarrow{x_{4}}=[50,300]$
$\overrightarrow{x_{5}}=[50,100]$
8. Add the following terms. Plot.

$$
\underline{x}=[1,1] \quad \underline{y}=[0,1] \quad \underline{z}=[1,0]
$$

a) $5 \underline{x}+2 \underline{y}$
b) $5 \underline{x}+2 \underline{z}$
c) $\underline{x}+2 \underline{y}+3 \underline{z}$
d) $3 \underline{x}+2 y+\underline{z}$
9. Calculate the unit vector $\vec{u}=\frac{\vec{x}}{\|\vec{x}\|}$ and plot.
a) $\vec{x}=[1,1]$
b) $\vec{x}=[10,0]$
c) $\vec{x}=[10,10]$

10. Calculate the dot product (inner product) between the vectors. Are they orthogonal (dot product $=0$)?

$$
[1,2] \cdot[3,4]^{\top}=
$$

$$
[-1,-1] \cdot[1,-1]^{\top}=
$$

$$
[1,0] \cdot[0,1]^{\top}=
$$

$$
[1,1] \cdot[1,1]^{\top}=
$$

11. a) What are the dimensions of \underline{a} and \underline{b} ? Which is the row vector and which is the column vector?

$$
\underline{a}=[1,2,3,4,5] \quad \text { and } \quad \underline{b}=[1,2,3,45]^{\top}
$$

b) Matrix multiplication (the inner product, or dot product) only works if the inner dimensions match. Do it if you can.

$$
\underline{\mathrm{a}} \underline{\mathrm{~b}}=
$$

$$
\underline{a}^{\top} \underline{b}=
$$

$$
\underline{a} \underline{b}^{\top}=
$$

$\underline{\mathrm{b}} \underline{\mathrm{a}}=$
$\underline{b}^{\top} \underline{a}=$
$\underline{b} \underline{a}^{\top}=$
12. Can you "imagine" that i squared is negative one?
13. Is each number: real, imaginary, or complex?
a) 22
b) $2 i$
c) $22+2 i$
d) $22+33$
e) $22+33 i$
f) $22 i-33$
g) 0
h) $\frac{\sqrt{2}}{2}$
i) $\frac{\sqrt{2}}{2}-\sqrt{2} i$
j) 0
k) π
I) $\sqrt{2}$
14. Simplify by using imaginary numbers
a) $\sqrt{-1}$
b) $\sqrt{-4}$
c) $\sqrt{-9}$
d) $\sqrt{-16}$
e) $\sqrt{-8}$
f) $\sqrt{-18}$
g) $\sqrt{-50}$
h) $\sqrt{-2}$
15. Simplify by using complex numbers
a) $\frac{2+\sqrt{-4}}{2}$
b) $\frac{2-\sqrt{-4}}{2}$
c) $\frac{2 \pm \sqrt{-4}}{2}$
d) $\frac{0+\sqrt{-9}}{2}$
e) $\frac{2-\sqrt{-8}}{2}$
f) $\frac{2 \pm \sqrt{-9}}{2}$
16. Combine like terms to simplify the complex numbers
a) $1+2+3+4 i+5 i+6 i+7 i=$
b) $(1+2+3)+(4 i+5 i+6 i+7 i)=$
c) $(1+2+3+4 i+5 i)+(6 i+7 i)=$
d) $(1+2)+3+(4 i+5 i+6 i+7 i)=$
e) $7 i+6 i+5 i+4 i+3+2+1=$
f) $(7 i+6 i+5 i+4 i)+3+2+1=$
g) $4 i+1+2+7 i+3+5 i+6 i=$
17. Multiply. Recall that $i^{2}=-1$.
a) $2 i \times 3=$
b) $-2 \times 3 i=$
c) $2 i \times-3 i=$
d) $-2 i \times-3 i=$
18. Simplify.
a) $i^{2}=$
b) $i^{3}=$
c) $i^{4}=$
d) $i^{5}=$
e) $i^{6}=$
f) $-2 i \times-2 i=$
g) $-2 i \times-2 i \times-2 i=$
h) $-2 i \times-2 i \times-2 i \times-2 i=$
i) $-2 i \times-2 i \times-2 i \times-2 i \times-2 i=$
j) $(-2 i)^{6}$
k) $(-2 i)^{7}$
I) $(-2 i)^{8}$
19. Distribute. Simplify.
$(1+2 i)(3+4 i)=$
$(1-2 i)(3+4 i)=$
$(1+2 i)(3-4 i)=$
$(1-2 i)(3-4 i)=$
$(2+3 i)(4+5 i)=$
$(2-3 i)(4+5 i)=$
$(2+3 i)(4-5 i)=$
$(2-3 i)(4-5 i)=$
20. Plot the parabola and find the zeros (if you can). Solve for unknown x using the quadratic formula. Plot the complex roots.

$$
a x^{2}+b x+c=0 \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
x^{2}+4 x+8=0
$$

$$
x^{2}+6 x+13=0
$$

$$
x^{2}+2 x+2=0 \quad 2 x^{2}+4 x+4=0
$$

$$
x^{2}+2 x+3=0
$$

$$
x^{2}+x+1=0
$$

21. a) What's the dot product $\vec{x} \vec{x}^{T}$ for $k=1,2,3,4$, and 5 ?

$$
\vec{x}=[1,2,3,4, \ldots, k]
$$

b) What happens to $\vec{x} \vec{x}^{T}$ as k becomes large?
22. a) What's the dot product $\vec{x} \vec{x}^{T}$ for $k=1,2,3,4$, and 5 ?

$$
\vec{x}=\left[\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \frac{1}{k}\right]
$$

b) True or False (Hint: look up the Basel Problem): As k becomes large (more than 1,000), $\vec{x} \vec{x}^{\top}$ converges to (approximately equals) $\frac{\pi^{2}}{6}$

