- 1. Place the elements {1, 2, 3, 4, 5} into a
 - a) row vector <u>a</u>
 - b) column vector <u>b</u>

2. What are some other notations for vectors <u>a</u> and <u>b</u>?

3. What are the dimensions of vectors \underline{a} and \underline{b} ?

4. What are \underline{a}^{T} and \underline{b}^{T} (T = transposed vectors)?

5. Freehand the following vectors. What is the magnitude (r) and direction (θ , the angle counterclockwise from the x-axis)?

a) [1, -1] [-1, 1] [-1, -1] [1, 0] [0, 1]

Algebra TOO Fast with Dr Scott

Problem Set #8 Page 2 of 15

b) [1, 1]
$$\left[\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]$$
 [10, 10] $\left[5\sqrt{2}, 5\sqrt{2}\right]$

6. Add the following vectors. Plot the three vectors.

[1, 1] + [1, -1] =

[-1, -1] + [1, -1] =

[1, 0] + [0, 1] =

[1, 1] + [1, 1] =

7 a) A ship captain logs the northward and eastward movement of a ship for 5 hours. Plot the course.

hour	Ν	E
1	10	10
2	20	20
3	30	10
4	30	10
5	10	10

b) An airplane flies due north for 5 hours, with wind coming from the west (moving east). Plot the course.

hour	airplane	wind
	speed	speed
1	100	50
2	200	100
3	300	50
4	300	50
5	100	50

c) What is the resultant vector \vec{x} ? Plot it. $\vec{x} = \overline{x_1} + \overline{x_2} + \overline{x_3} + \overline{x_4} + \overline{x_5}$ i) $\vec{x_1} = [1, 0]$ $\vec{x_2} = [2, 0]$ $\overline{x_3} = [3, 0]$ $\vec{x_4} = [4, 0]$ $\overline{x_5} = [5, 0]$ ii) $\overline{x_1} = [10, 10]$ $\vec{x_2} = [20, 20]$ $\overline{x_3} = [10, 30]$ $\overline{x_4} = [10, 30]$

$$\overline{x_5}$$
 = [10, 10]

iii)
$$\overline{x_1} = [50, 100]$$

 $\overline{x_2} = [100, 200]$
 $\overline{x_3} = [50, 300]$
 $\overline{x_4} = [50, 300]$
 $\overline{x_5} = [50, 100]$

8. Add the following terms. Plot.

- $\underline{x} = [1, 1]$ $\underline{y} = [0, 1]$ $\underline{z} = [1, 0]$
- a) 5<u>x</u> + 2<u>y</u>
- b)5<u>x</u> + 2<u>z</u>
- c) x + 2y + 3z
- d) $3\underline{x} + 2\underline{y} + \underline{z}$
- 9. Calculate the unit vector $\vec{u} = \frac{\vec{x}}{\|\vec{x}\|}$ and plot. a) $\vec{x} = [1, 1]$ b) $\vec{x} = [10, 0]$ c) $\vec{x} = [10, 10]$

10. Calculate the dot product (inner product) between the vectors. Are they orthogonal (dot product = 0)?

 $[1, 2] \cdot [3, 4]^{\mathsf{T}} =$

$$[-1, -1] \cdot [1, -1]^{\mathsf{T}} =$$

 $[1, 0] \cdot [0, 1]^{\mathsf{T}} =$

 $[1, 1] \cdot [1, 1]^{\mathsf{T}} =$

11. a) What are the dimensions of <u>a</u> and <u>b</u>? Which is the row vector and which is the column vector?

<u>a</u> = [1, 2, 3, 4, 5] and <u>b</u> = $[1, 2, 3, 4, 5]^{T}$

b) Matrix multiplication (the inner product, or dot product) only works if the inner dimensions match. Do it if you can.

<u>ab</u> =
<u>a[⊤]b</u> =
<u>a b[⊤] =</u>
<u>ba</u> =
<u>b[⊤]a</u> =
ba [⊤] =

12. Can you "imagine" that *i* squared is negative one?13. Is each number: real, imaginary, or complex?

a) 22 d) 22 + 33 g) 0 j) 0 b) 2i e) 22 + 33i h) $\frac{\sqrt{2}}{2}$ k) π c) 22 + 2i f) 22i - 33 i) $\frac{\sqrt{2}}{2} - \sqrt{2}i$ l) $\sqrt{2}$

14. Simplify by using imaginary numbers

a) $\sqrt{-1}$ b) $\sqrt{-4}$ c) $\sqrt{-9}$ d) $\sqrt{-16}$

e) $\sqrt{-8}$ f) $\sqrt{-18}$ g) $\sqrt{-50}$ h) $\sqrt{-2}$

15. Simplify by using complex numbers

a)
$$\frac{2+\sqrt{-4}}{2}$$
 b) $\frac{2-\sqrt{-4}}{2}$ c) $\frac{2\pm\sqrt{-4}}{2}$

d)
$$\frac{0+\sqrt{-9}}{2}$$
 e) $\frac{2-\sqrt{-8}}{2}$ f) $\frac{2\pm\sqrt{-9}}{2}$

16. Combine like terms to simplify the complex numbers

b)
$$(1 + 2 + 3) + (4i + 5i + 6i + 7i) =$$

c)
$$(1 + 2 + 3 + 4i + 5i) + (6i + 7i) =$$

d)
$$(1 + 2) + 3 + (4i + 5i + 6i + 7i) =$$

- e) 7i + 6i + 5i + 4i + 3 + 2 + 1 =
- f) (7i + 6i + 5i + 4i) + 3 + 2 + 1 =
- g) 4i + 1 + 2 + 7i + 3 + 5i + 6i =

17. Multiply. Recall that
$$i^2 = -1$$
.
a) $2i \times 3 =$ c) $2i \times -3i =$

b) $-2 \times 3i =$ d) $-2i \times -3i =$

18. Simplify.

a) *i*² = b) *i*³ = c) *i*⁴ = d) *i*⁵ = e) *i*⁶ = f) $-2i \times -2i =$ g) $-2i \times -2i \times -2i =$ h) $-2i \times -2i \times -2i \times -2i =$ i) $-2i \times -2i \times -2i \times -2i \times -2i =$ j) (-2*i*)⁶ k) (-2*i*)⁷

l) (-2*i*)⁸

19. Distribute. Simplify.

$$(1+2i)(3+4i) =$$

$$(1 - 2i)(3 + 4i) =$$

$$(1+2i)(3-4i) =$$

$$(1 - 2i)(3 - 4i) =$$

$$(2+3i)(4+5i) =$$

$$(2 - 3i)(4 + 5i) =$$

$$(2+3i)(4-5i) =$$

$$(2 - 3i)(4 - 5i) =$$

20. Plot the parabola and find the zeros (if you can). Solve for unknown *x* using the quadratic formula. Plot the complex roots.

$$ax^{2} + bx + c = 0$$
 $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$

 $x^2 + 4x + 8 = 0$ $x^2 + 6x + 13 = 0$

$$x^2 + 2x + 2 = 0$$

$$2x^2 + 4x + 4 = 0$$

$$x^2 + 2x + 3 = 0$$

$$x^2 + x + 1 = 0$$

21. a) What's the dot product $\vec{x}\vec{x}^{T}$ for k = 1, 2, 3, 4, and 5?

 $\vec{x} = [1, 2, 3, 4, \dots, k]$

b) What happens to $\vec{x}\vec{x}^{T}$ as k becomes large?

22. a) What's the dot product $\vec{x}\vec{x}^{T}$ for k = 1, 2, 3, 4, and 5?

$$\vec{x} = \begin{bmatrix} \frac{1}{1}, & \frac{1}{2}, & \frac{1}{3}, & \frac{1}{4}, & \dots, & \frac{1}{k} \end{bmatrix}$$

b) True or False (Hint: look up the Basel Problem):As k becomes large (more than 1,000),

 $\vec{x}\vec{x}^{T}$ converges to (approximately equals) $\frac{\pi^{2}}{6}$