

Worksheet

Polyatomic ions

Polyatomic ions are charged groups of atoms. An example is ammonium ion, NH₄⁺. It has five atoms (one nitrogen and four hydrogens) that share a charge of +1. The polyatomic ions remain intact, and parentheses may be required when using subscripts. For example, ammonium chloride is NH₄Cl and ammonium sulfide is (NH₄)₂S. Ammonium is the only polyatomic cation. Common anions are shown in Table 1.

Table 1. Polyatomic ions

Ion Name	Ion Formula
ammonium	NH ₄ ⁺
cyanide	CN ⁻
hydroxide	OH-
perchlorate	ClO ₄
chlorate	ClO ₃
chlorite	ClO ₂ -
hypochlorite	C10 -
bromate	BrO ₃
iodate	103-
nitrate	NO ₃
sulfate	SO ₄ ²⁻
carbonate	CO ₃ ²⁻
hydrogen carbonate (bicarbonate)	HCO ₃ ⁻
phosphate	PO ₄ ³⁻
hydrogen phosphate	HPO ₄ ²⁻
dihydrogen phosphate	H ₂ PO ₄ ⁻
chromate	CrO ₄ ²⁻
acetate	CH ₃ COO-

Dr. Scott Beaver Page 1 of 6

Nomenclature for polyatomic ions Worksheet

There are many polyatomic anions. Many occur in **families of names**. **Start by learning the polyatomic ions ending with "-ate"** such as chlorate (ClO_3^-) , nitrate (NO_3^{2-}) , sulfate (SO_4^{2-}) , carbonate (CO_3^{2-}) , and phosphate (PO_4^{3-}) .

The corresponding "-ite" ion name has one less oxygen and the same charge. For example, chlorite ion is ClO_2 . Less commonly used names are the "per__-ate" and "hypo__-ite" forms to indicate different numbers of oxygen.

Key in on the chlorate family in Table 1 to construct names for other ions. For example, sulfite (not in the table) would be SO_3^{2-} , because it has the same charge and one less oxygen than sulfate (SO_4^{2-} in the table).

Sometimes "bi-" indicates H^+ has attached. For example, bicarbonate (HCO_3^-) and carbonate (CO_3^{2-}).

Hydroxide, cyanide, permanganate, acetate, and chromate/dichromate are common polyatomics that do <u>not</u> occur in families.

Dr. Scott Beaver Page 2 of 6

Worksheet

Exercise 1. Complete the table of neutral ionic compounds with the <u>formulas</u> and <u>names</u> for each cation-anion pair.

	SO ₄ ²⁻	NO ₃ -	PO ₄ ³⁻	CO ₃ ²⁻	ClO ₃ -	OH-
Na ⁺						
Al ³⁺						
Ba ²⁺						
NH ₄ ⁺						
Cu+						

Dr. Scott Beaver

Worksheet

Exercise 2. Provide the formula for each compound.

sodium sulfate	
sodium bisulfate	
sodium sulfite	
sodium sulfide	
copper (I) sulfate	
copper (II) sulfite	
copper (II) sulfide	

Dr. Scott Beaver

Worksheet

Exercise 3. Provide the formula for each compound.

nickel (III) carbonate	
calcium nitrate	
copper (II) acetate	
potassium phosphate	
silver acetate	
zinc chromate	
tin (II) nitrate	
tin (II) nitrite	
ammonium bicarbonate	· <u></u>
copper (II) sulfite	· <u></u>
sodium hydroxide	
potassium cyanide	
potassium phosphide	

Dr. Scott Beaver Page 5 of 6

Worksheet

Exercise 4. Provide the name for each compound.

CuCN	
FeO	
ZnO	
Al_2O_3	
AgCl	
NH ₄ NO ₃	
NaNO ₃	
NaNO ₂	
Ca(NO ₂) ₂	
FeCrO ₄	